

Climate Resilience

We are strengthening our climate resilience at Galaxy by reducing greenhouse gas emissions and transitioning to sustainable energy. We systematically track and report emissions across our global operations, adhering to international standards. Our commitment to

renewable energy is expanding through solar installations and Power Purchase Agreements (PPAs), alongside energy efficiency measures to minimise environmental impact. Climate risk assessments are embedded in our strategic planning, supported by continuous emissions

monitoring for transparency and accountability. By prioritising low-carbon strategies and fostering a culture of sustainability, we are building resilience and aligning our operations with global climate goals.

Energy Management

Every action we take creates ripples of change, shaping a more sustainable future. As a responsible organisation, we optimise energy use and integrate renewable energy sources to amplify our positive impact.

9,877.89 kWp

Renewable power capacity

Energy Management Initiatives

Accelerating Renewable Energy Adoption

We are expanding hybrid wind and solar projects and securing power purchase agreements with solar suppliers to increase our renewable energy share. We installed rooftop solar panels, achieving a total of 673.89 kWp across our corporate office and manufacturing facilities in Taloja, Tarapur and Jhagadia. The emissions reduced due to renewable electricity usage was 10,377 metric tonnes of CO₂e.

Enhancing Energy Efficiency

Our operations benefit from highefficiency equipment to minimise energy wastage.

Systematic Energy Audits

We conduct regular energy audits to identify and implement new energy conservation measures.

Industry Recognition

Our Taloja facility has received the CII 'Excellent Energy Efficient' award for the third consecutive year, showcasing our commitment to sustainable energy practices.

ISO 50001 Certification

Our energy management system aligns with global best practices, driving continual improvement in energy performance and environmental impact reduction. Our Taloja plant is ISO 50001-certified, while work is currently underway at our Tarapur and Jhagadia plants to achieve this certification as part of our ongoing sustainability efforts.

Comprehensive Energy Mix

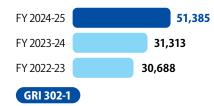
We leverage a diverse energy mix comprising natural gas, diesel, grid electricity and an increasing proportion of renewable energy, enabling us to balance operational efficiency with our sustainability goals.

Earth Day and Earth Hour Celebrations

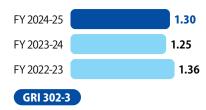
Our employees celebrated Earth Day by participating in green activities, such as planting saplings. During Earth Hour, they switched off the lights at their homes for one hour and engaged in creative activities along with their families for honouring the planet.

Moments of Celebration

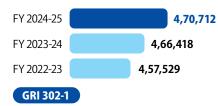
National Energy Conservation Week


We held activities like quizzes, poster competitions, one-minute talks, debate competitions and awareness sessions to promote energy efficiency.

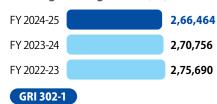
Zero Emissions Day (21st September)


We organised campaigns focused on raising awareness about carbon emission reduction and promoting sustainable practices. As part of the initiative, we asked employees to share how they incorporate sustainability into their daily lives at home. From energy conservation and waste segregation to mindful consumption and eco-friendly choices, their responses reflected a strong sense of environmental responsibility. These stories were shared internally to inspire the rest of the employees and foster a deeper culture of sustainability that goes beyond the workplace.

Energy Consumption


Total Energy Consumption through Renewable Sources (GJ)

Energy Intensity (Per Unit of Production/Output GJ/MT)


Total Energy Consumption through Non-renewable Sources (GJ)

Specific Electricity Consumption (GJ/MT)

Total Fuel Consumption for Heating/Cooling/Steam (GJ)

Case Study

Sustainable Energy Transition at TRI-K (Derry Solar Panels)

The Challenge

TRI-K's Derry site sources its electricity from Eversource Energy. With Eversource Energy sourcing 76% of its electricity from non-renewable fossil fuels. TRI-K had a carbon footprint of 132 MT of CO₂e in CY 2023 from grid electricity use. In 2023, TRI-K Derry faced high energy costs, spending over USD 65,000 on electricity. Although typical for businesses in New Hampshire, TRI-K Derry lacked sustainability metrics and needed a solution to reduce energy costs and environmental impact.

The Solution

TRI-K Derry installed a 294.15 kW solar power generation system on its roof, comprising 555 panels and two inverters. This system has been designed to meet the Derry site's 90% of electricity demand for CY 2023, generating 3,41,944 kWh annually, with a payback period of eight years.

3,41,944 kWh

Solar power will be generated

The Impact

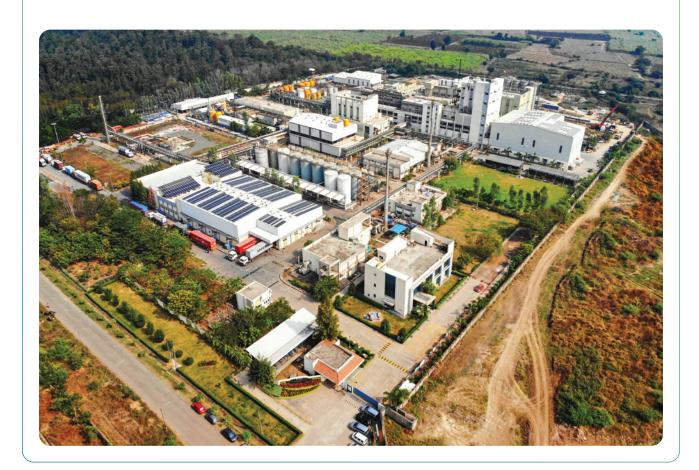
The system will reduce TRI-K Derry's CO₂ emissions by 152 MT CO₂eq/year, equivalent to removing 33 cars off the road. The transition to solar power will not only cut costs but will also make a significant environmental impact.

Case Study

Energy Efficiency Projects

The Challenge

In sulfonation operations, reducing emissions during specific phases such as start-up and stabilisation is critical. Previously, key equipment continued to operate even when not required, leading to avoidable energy consumption and emissions.


The Solution

We implemented a smart interlock system that automatically synchronises equipment operation with actual process demand. This ensures energy is used only when necessary, significantly reducing wastage.

The Impact

This automation initiative has led to measurable improvements in energy efficiency and emissions reduction, aligning with our broader sustainability goals.

This initiative optimises energy use, cuts emissions and supports sustainability, proving that minor process improvements can drive significant results.

GHG Emissions

The urgency of climate action calls for urgent innovation. Addressing Scope 1, 2 and 3 emissions is vital for regulatory compliance, investor expectations and mitigating climate change. Reducing these emissions helps curb global warming, align businesses with emission reduction commitments and build resilience against climate risks. Our proactive approach ensures that every small change contributes to a significant positive impact.

Management level

CDP Climate Change Disclosure Rating

Sustainability Goal: Mission 2030

40%

Absolute reduction in Scope 1 & 2 GHG emissions

75%

Renewable electrical energy share

GHGs Emissions Management Initiatives

- Continuous Monitoring and Reporting: We have a transparent and structured approach to tracking and reporting GHG emissions across all our facilities, aligning with established protocols. Our GHG dashboard tracks emissions across Scope 1, 2 and 3 with monthly reporting
- Decarbonisation Strategies: Implementing carbon pricing, product carbon footprints and

- emission reduction initiatives, including CEP and PARIVARTAN WESAP initiatives
- Renewable Energy Integration:
 We expand our reliance on
 clean energy sources to lower
 operational emissions
- Industry Transparency:
 We disclose our climate related risks and opportunities
 through CDP reporting,
 reinforcing accountability

Our Carbon Footprint By Scope

Parameters	Unit	FY 2022-23	FY 2023-24	FY 2024-25
Scope 1 Emissions (GRI 305-1)	tCO ₂ e	20,637	19,520	18,385
Scope 2 Emissions (GRI 305-2)	tCO ₂ e	34,704	38,034	35,634
Scope 3 Emissions (GRI 305-3)	tCO ₂ e	6,56,475	9,52,622	7,56,664
Reduction of GHG Emissions due to Energy Efficiency Projects (Scope 1&2) (GRI 305-5)	tCO ₂ e	454	855	873
Emissions reduced Due to Solar Energy Usage	tCO ₂ e	7,800	7,158	10,377

Scope 3 Emissions

Scope 3 Category Category	Catamania	Emissions (tCO ₂ e)		
	Category	FY 2022-23	FY 2023-24	FY2024-25
Category 1	Purchased Goods And Services	6,12,596	9,06,791	6,41,409
Category 2	Capital Goods	11,206	6,077	26,370
Category 3	Fuel and Energy-related Activities	Not reported	15	17,698
Category 4	Upstream Transportation and Distribution	7,260	8,250	35,251
Category 5	Waste Generated in Operations	Not reported	330	566
Category 6	Business Travel	582	909	1,437
Category 7	Employee Commuting	918	968	739
Category 9	Downstream Transportation and Distribution	23,913	29,283	28,253
Category 12	End of Life of Sold Product	Not reported	Not reported	4,940

Reduction in Energy Consumption (GJ)

Amount of reductions in energy consumption due to conservation and efficiency initiatives

292 MWh

Types of energy included in the reductions; whether fuel, electricity, heating, cooling, steam, or all

Our energy mix includes power and fuel from both non-renewable and renewable sources.

Type of energy: Furnace oil, coal, light diesel oil, high speed diesel oil, natural gas, Biobriquette, grid electricity and renewable electricity.

Basis for calculating reductions in energy consumption, such as base year or baseline, including the rationale for choosing it

Energy savings are tracked by comparing plant operating data before and after implementing specific projects.

Standards, methodologies, assumptions, and/or calculation tools used

We calculate energy conversion by utilising the calorific value of the respective fuel to convert it into GJ. The calorific values are sourced from a published chapter by the Bureau of Energy Efficiency, as well as from invoice references for coal and natural gas. The conversion factors used for these calculations are derived from reliable online sources.

GRI 302-4

Scope 1 and 2 Emission Intensity

Internal Carbon Pricing

At Galaxy, we have implemented an internal carbon pricing (ICP) scheme to embed climate considerations into strategic and financial decision-making. The price is applied across Scope 1, 2 and 3 greenhouse gas (GHG) emissions and reflects the financial impact of our mitigation initiatives undertaken during the financial year. It is determined by evaluating the cost of measures required to meet our climate targets,

including the procurement of renewable energy, green raw materials and investments in energy and resource efficiency.

This ICP supports the development of a carbon offset budget and incentivises low-carbon investments while enabling cost-benefit analyses of climate actions. It also guides procurement strategies and operational planning

by integrating sustainability considerations across our value chain. By accounting for initiatives that reduce emissions and resource consumption, such as efficiency improvements in fuel usage, energy conservation measures, and responsible resource management, the ICP strengthens our transition pathway towards long-term climate resilience and sustainable growth.

Reducing Scope 1 Emissions: Boiler Optimisation

To optimise fuel utilisation and reduce greenhouse gas emissions, we transitioned our steam generation from an underloaded 3 TPH boiler to a more efficient 1.1 TPH boiler. The 3 TPH boiler, which ran on natural gas, was operating at below 30% capacity due to shifts

in production demand. To enhance efficiency, we installed a dual-burner system in the 1.1 TPH boiler, enabling it to operate primarily on natural gas, with Light Diesel Oil (LDO) used only as a backup during natural gas supply shutdowns. This strategic shift improved energy efficiency and also contributed to emission reduction.

This strategic shift resulted in:

- A significant improvement in the steam fuel (SF) ratio from 9.8 to 12.85
- A total decrease of 61,200 kg of CO₂e emissions
- An increase in boiler efficiency from 68% to 85%
- This initiative contributed significantly to our decarbonisation efforts

Scope 2 Emissions Reduction: Energy-efficiency in Cooling Systems

We identified key inefficiencies in our cooling systems, increasing energy consumption. To address this, we undertook two major interventions:

Replacement of Overdesigned Primary Circulation Pump

- The existing pump was overdesigned, operating at twice the required system head, leading to excessive energy use
- By replacing it with a correctly-sized pump, we achieved:
 - A reduction of 31.7 tonnes of CO₂e annually
 - A decrease in power consumption, providing a payback period of 5.3 months

Cooling Tower Optimisation

Installation of a pneumatic on/off valve at the cooling water inlet, integrated with a PLC controller, allowing for better control over energy use.

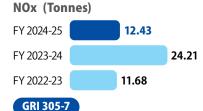
- 70% reduction in energy consumption
- 58,602 kWh of electricity saved annually
- Emissions reduction of 118 kg CO₂e per year

Details of Energy-efficiency Projects

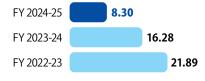
Project Description	Scope	GHG Emissions Savings (tCO ₂ e)
Elimination of Solid Raw Material (RM) with Liquid RM	Scope 2	484.41
Elimination of Furnace Oil-fuelled Backup Power Generator	Scope 2	98
Energy Saving in Heating	Scope 1	76
Installation of Dual-fuel Burner for Boiler	Scope 1	61.2
Energy-saving in WHRB	Scope 1	44.48
Reduction of Steam in Heating	Scope 1	27
Optimisation of Pump Head at Chilling Plant	Scope 2	21.5
Power Reduction in Hydropneumatic Pumping System	Scope 2	15.88
Batch Cycle Time Reduction	Scope 2	7.93
Power Reduction in Reactor	Scope 2	7.36

Air Emissions

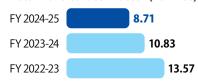
Air pollution poses risks to both climate stability and public health. At Galaxy, we adopt a responsible and data-driven approach to air quality management. We consider factors such as gas flow rate, molecular weight and plant operating hours when calculating total emissions,


ensuring we remain well within statutory norms while striving for continuous improvement.

To uphold air quality standards, we maintain a rigorous emissions monitoring system across our Indian manufacturing facilities. At our Jhagadia plant, stack emissions are monitored monthly, while monitoring is conducted quarterly at our Taloja, Tarapur and Galaxy Research Centre (GRC). All measurements are carried out by authorised third-party agencies to ensure accuracy and full regulatory compliance.


Air Emission Management Initiatives

- Installing bag filters, scrubbers and retrofit emission control devices (RECDs) reduce air pollution by capturing harmful particles and gases
- Monitoring of sulphur oxides (SOx), nitrogen oxides (NOx) and
- total particulate matter (TPM) emissions regularly
- Conducting monthly and quarterly external measurements to ensure compliance with air quality standards
- Implementing process improvements to reduce reliance on high-emission fuels
- Increasing employee awareness and training on air emission control measures


Air Pollutants

Total Particulate Matter (Tonnes)

Case Study

Cleaner Emissions with RECDs

The Challenge

Diesel generators are vital but major pollution sources, emitting particulate matter (PM), hydrocarbons (HC) and carbon monoxide (CO). Stricter regulations demand effective emission control.

The Solution

The RECD retrofitted diesel engine up to 800 kW (1,000 kVA), cutting emissions by 70-90% while maintaining optimal performance. This intervention led to significant benefits, including:

- Significant PM, HC and CO reduction
- Easy installation on existing generators
- No impact on power output

The Impact

A manufacturing unit installed RECDs on 1,000 kVA generators, achieving:

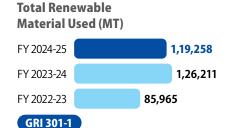
- 85% lower PM emissions
- Drastic carbon monoxide and hydrocarbons reductions
- Noticeable air quality improvement

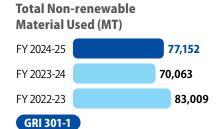
RECD delivers a cost-effective, regulatory-compliant solution for cleaner diesel power.

Material Management

Effective material management is crucial to our sustainability efforts. Palm oil, a key raw material for our products, has raised environmental and social concerns. To address these risks, we source palm oil and its derivatives from RSPO certified supplier as per customers demands. Our commitment to sustainable sourcing began in 2012 when we joined the Roundtable on Sustainable Palm Oil (RSPO).

Sustainability Goal: Mission 2030


100% Traceability to Mill


60%
Traceability to Plantation

3 Suppliers

To be supported under solidarity sourcing and smallholder inclusion

Material Usage

We are committed to optimising material use and implementing sustainable sourcing strategies. Our major material management measures comprise:

Upcycling Initiatives: Extracting peptides from waste materials like moringa seed cake to reduce waste and add value to byproducts.

Sustainable Sourcing: Prioritising raw materials such as RSPO-certified palm oil and responsibly sourced petrochemical derivatives.

Supplier Sustainability Assessments: Conducting annual evaluations to ensure ethical and environmental compliance across

and add value to byproducts. our supply chain. Water Management

Water is one of our most critical natural resources, essential for utility needs, production processes and water, sanitation and hygiene (WASH)-related services. We primarily source water from third-party suppliers, which we treat on-site to meet quality standards before use.

Sustainability Goal: Mission 2030

5%


Reduction in third-party water withdrawal intensity by FY 2029-30

2x

Water positivity by FY 2029-30

1.4x

Water positivity achieved in FY 2021-22

Water Management Initiatives

Galaxy focuses on optimising water efficiency through structured initiatives like:

- Water Efficiency Management: Implementing water efficiency management standards across all operations, resulting in reduced water usage
 - Additional initiatives include rainwater harvesting, ensuring access to potable drinking water, revitalising wells, improving sanitation facilities, constructing check dams, desilting water bodies and installing patented Kedia Farm Pattern rainwater harvesting structures on farmers' fields
- Rainwater Harvesting: Rainwater harvesting contributes to approximately 2-3% of our total water needs, depending on the local climatic conditions and seasonal rainfall patterns, providing a sustainable water source
- Process Optimisation: We employ best-in-class cooling technologies in our processes, significantly reducing water consumption by optimising cooling operations and enhancing efficiency in water use across production activities
- Cost Efficiency Projects (CEPs): Our CEPs focus on small-scale initiatives aimed at improving water efficiency across various operations, reducing wastage and optimising usage without compromising operational performance

Water Withdrawal by Source (ML) in FY 2024-25

	All Are	eas	Areas with Water Stress		
	Freshwater (<1,000 mg/L total dissolved solids)	Other Water (>1,000 mg/L total dissolved solids)	Freshwater (<1,000 mg/L total dissolved solids)	Other Water (>1,000 mg/L total dissolved solids)	
Surface water (RWH)	12.68	0	0	0	
Groundwater	0	0	0	0	
Seawater	0	0	0	0	
Produced Water	0	0	0	0	
Third-party Water	532.49	0	345.20	0	
Total	545.17	0	345.20	0	
Total Water Withdrawal	545.17		345.20		

GRI 303-3

Water Discharge by Destination (ML) in FY 2024-25

	All Areas		Areas with Water Stress		
	Discharge by Freshwater (≤1,000 mg/L total dissolved solids)	Discharge by Other Water (>1,000 mg/L total dissolved solids)	Discharge by Freshwater (≤1,000 mg/L total dissolved solids)	Discharge by Other Water (>1,000 mg/L total dissolved solids)	
Surface water	0	0	0	0	
Groundwater	0	0	0	0	
Seawater	0	0	0	0	
Third-party Water	25.92	3.51	22.95	0	
Total	25.92	3.51	22.95	0	
Total Water Withdrawal	29.43		22.95		

GRI 303-4

Water Consumption (ML)

	All Areas	Areas with Water Stress	
Total Water Consumption	515.74	322.26	

GRI 303-5

Case Study

Towards Water Positivity: Tarapur Site

In a world where water resources are increasingly strained by population growth and climate change, innovative solutions have become more crucial than ever. Galaxy has responded to this challenge by embedding water stewardship into its core values, in alignment with UN SDG 6 and our commitment to upholding human rights. This commitment ensures that all stakeholders, including employees, communities and neighbouring regions, have access to a safe and healthy environment.

Recognising our significant reliance on freshwater for operations, we devised a comprehensive strategy to achieve water positivity. This strategy includes maximising operational water efficiency, enhancing effluent management and boosting recycling capacity.

We have launched water harvesting projects in water-stressed areas and tapped into the rainwater potential within our facilities and surrounding areas.

A notable example of our efforts is the Tarapur manufacturing facility. In FY 2021-22, Tarapur achieved an outstanding water positivity index of 1.34. This remarkable performance was instrumental in helping Galaxy attain an overall water positivity index of 1.4 across all operations, surpassing our goal of replenishing more freshwater than we consume. This achievement was independently verified by a third-party agency.

Water Risk Assessment

At Galaxy, we recognise water as a vital and shared resource essential to both our operations and the ecosystems around us. With increasing climate variability and local water scarcity, we proactively assess and address water-related risks across our value chain. We have identified sites located in water-stressed regions and implemented strategic actions such as rainwater harvesting, improving water use efficiency and exploring alternative sources. These efforts help us reduce our water dependence and enhance operational resilience in regions most vulnerable to water stress.

To guide our risk management approach, we use tools like EcoVadis, WRI Agueduct and the WWF Water Risk Filter. These platforms help us identify and evaluate physical, regulatory and reputational water risks. Physical risks include scarcity or declining quality, while regulatory risks may arise from changing governance or compliance issues. Reputational risks emerge when unsustainable practices affect community trust, especially in highrisk areas. By addressing these risks, we strengthen our long-term water stewardship and maintain alignment with sustainable business practices.

Our assessment follows globally accepted methodologies, using the WWF Water Risk Filter and WRI Aqueduct. We evaluate risks in three key areas:

- Physical Risk: Water scarcity, flooding and ecosystem impact
- Regulatory Risk: Governance, infrastructure and policy frameworks
- Reputational Risk: Cultural significance, biodiversity and public perception

Internal Water Pricing

At Galaxy, we have developed an Internal Water Pricing (IWP) methodology that enables the economic valuation of water resources by factoring in the operational costs associated with water treatment, effluent treatment and other utility operations. This integrated pricing mechanism supports our commitment to sustainable water use and also strengthens our compliance with evolving environmental standards.

- Water costs are expected to rise due to increasing regulatory requirements, the complexity of treatment processes and the adoption of advanced technologies. The need for regular maintenance and upgrades of utilities further adds to this trend. Coupled with the impacts of climate change and growing water scarcity, these factors make efficient water management critical for long-term operational resilience and responsible environmental stewardship. This pricing model helps us quantify the financial risks associated with water scarcity at high-risk sites, facilitating better decision-making
- By assigning an economic value to water, we prioritised investment in water efficiency projects and conservation measures
- This approach aided in stakeholder engagement, allowing local communities to participate in water management initiatives

We aligned the internal pricing strategy with our broader sustainability goals, ensuring that water remains a valued resource within our operations.

Wastewater Management

Galaxy prioritises responsible water management, integrating innovative treatment solutions to minimise pollutants and optimise water reuse. We are committed to reducing our water footprint through rigorous monitoring, advanced treatment technologies and strategic partnerships while ensuring compliance with local regulations.

- Zero Liquid Discharge (ZLD) and Water Recycling: All our manufacturing sites in India operate as Zero Liquid Discharge (ZLD) facilities, enabling us to recycle and reuse wastewater effectively. At the Group level, this closed-loop system helps us meet 18% of our operational water needs, while within our Indian operations, this figure rises to 26.43%. These efforts significantly reduce our reliance on freshwater sources and reaffirm our commitment to responsible and sustainable water management
- Effluent Treatment: Our facilities employ cutting-edge treatment processes, including effluent treatment plants (ETPs) and reverse osmosis (RO). RO rejects are directed to multi-effect evaporators (MEE) and agitated thin-film dryers (ATFDs) for further treatment

- Strict Monitoring: We continuously monitor key parameters like biochemical oxygen demand (BOD), chemical oxygen demand (COD), soluble salts and suspended solids to ensure water quality remains within permissible limits
- Regulatory Adherence:
 Treated effluents from non-ZLD facilities are safely discharged to third-party common effluent treatment plants (CETPs), ensuring compliance with relevant local environmental standards

CDP Water Security Disclosure Rating

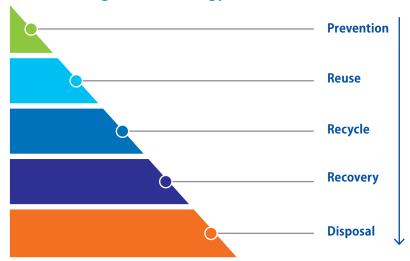
A-Leadership level

Waste Management

77%

Waste circularity achieved

Proper waste management is essential for minimising environmental damage, conserving vital resources and promoting a circular economy. As a responsible manufacturer, we at Galaxy strive to reduce waste, improve resource efficiency and achieve 90% waste circularity by 2030. Our sustainable waste management initiatives aim to safeguard ecosystems and contribute to a cleaner future.


We implement a comprehensive waste management plan guided by the waste hierarchy, focusing on waste prevention and reduction as priorities. We emphasise reuse, recycling and recovery, only resorting to responsible disposal when necessary. Our strategy targets diverting waste from landfills and incineration through innovative practices, careful tracking and reliable partnerships.

Sustainability Goal: Mission 2030

90% Waste circularity

5%
Reduction in waste generation intensity

Waste Management Strategy

Waste Management Initiatives

We are steadily progressing towards a Zero Waste to Incineration model by shifting away from conventional disposal methods such as incineration and landfilling. Instead, we prioritise co-processing, reuse and recycling as preferred end-of-life solutions. High-calorific-value hazardous waste is repurposed for energy recovery through co-processing in cement kilns, aligning with our circular economy goals.

We also collaborate with authorised vendors to ensure environmentally responsible disposal and recycling of hazardous and non-hazardous waste. These partnerships help us meet regulatory requirements while closing material loops. Together, these efforts reflect our commitment to reducing our environmental footprint and promoting sustainable waste management across our operations.

Noteworthy Celebrations

- World Environment Day (June 5)
 - Beach Clean-up (Chinchani): 190 kg of waste collected and sent for recycling
 - Tree Plantation (Colaba, Mumbai): 2,000 trees planted in collaboration with the Indian Army and Hariyali
 - Galaxy Kids Initiative: Employees' kids receive saplings and participate in eco-awareness activities
- International E-Waste Day (October 14): Awareness campaigns on responsible e-waste disposal and recycling
- Zero Waste Day (March 30): Initiatives promoting waste reduction and sustainable disposal practices

Types of Waste Generated*

Waste Type	Unit	FY 2022-23	FY 2023-24	FY 2024-25
Plastic Waste	MT	468	529	687
E-waste	MT	8.68	2.90	2.77
Construction and Demolition Waste	MT	6,382	5,260	6,493
Biomedical Waste	MT	0.39	0.14	0.06
Battery Waste	MT	9.29	10.58	22.10
Other Hazardous Waste	MT	8,277	7,414	8,536
Other Non-Hazardous Waste	MT	1,840	1,702	1,850
Total Waste Generated	MT	16,986	14,919	17,591

GRI 306-3

Waste Diverted From Disposal

Parameters	Unit	FY 2022-23	FY 2023-24	FY 2024-25
Recycled	MT	4,565	4,822	3,981
Reused	MT	8,299	6,398	8,062
Other Recovery Operations	MT	435	0	1,519
Waste Diverted from Disposal	MT	13,298	11,220	13,562

GRI 306-4

Waste Disposed by Nature of Disposal Method

Parameters	Unit	FY 2022-23	FY 2023-24	FY 2024-25
Incineration	MT	2,354	3,024	3,268
Landfilling	MT	741	675	762
Other Disposal Operations	MT	592	0	0
Total Waste Directed to Disposal	MT	3,688	3699	4,030

GRI 306-5

Fulfilling Our EPR Commitment in Plastic Waste Management

At Galaxy Surfactants, we adhere to India's Plastic Waste Management Rules through a well-established **Extended Producer Responsibility** (EPR) framework. In partnership with authorised Producer Responsibility Organisations (PROs), we ensure that the plastic packaging we introduce into the market is responsibly collected, transported and processed at end-of-life. Our compliance is fully digitised through the CPCB EPR Portal, where we report our obligations and track fulfilment. This proactive system allows us to maintain zero non-compliance risk while supporting circularity in packaging waste management.

Case Study

Waste Reduction Initiatives in New Projects

- Use of MixIT software for agitator selection and motor selection for best efficiency
- Selection of IE3 (premium efficiency) motors made by default for all projects
- Extensive use of variable frequency drives (VFD) for variable load to reduce energy consumption
- Lifecycle cost assessment -TCC sheet
- Maximise the use of in-line vertical pumps for better efficiency
- Maximise the seal flushing plan selection as Waterless cooling
- 100% recycling of condensate water
- Air-cooled chillers instead of water-cooled ones

^{*}Waste figures for FY 2022-23 and FY 2023-24 have been restated due to completeness and accuracy.

Case Study

Turning Waste into Wealth: A Circular Approach

The Challenge

Our facility produces key ingredients that previously required imported raw materials. To enhance self-sufficiency, we began producing these materials in-house, resulting in the generation of certain byproducts. In the upcoming period, we anticipate generating significant quantities of these byproducts, which were initially treated as hazardous waste and required costly disposal. Additionally, reliance on external suppliers for other production materials continues to contribute to higher procurement costs and increased carbon emissions.

The Solution

A lab study revealed that sodium bisulphite from acid chloride manufacturing could replace sodium meta bisulphite in betaine production, improving product colour while maintaining effectiveness. As a result, a significant quantity of sodium bisulphite was redirected for internal use, reducing waste and procurement needs. For hydrochloric acid, we identified local buyers, ensuring that all generated hydrochloric acid was sold instead of being disposed of.

The Impact

- Reduction in emissions through the reuse of significant quantities of byproducts
- Elimination of emissions by selling by-products

By transforming waste into value, reducing emissions and reinforcing sustainable manufacturing, we turn a challenge into a game-changing opportunity.

Parivartan WESAP

Galaxy has adopted the Waste Elimination Suggestion Award Programme (WESAP), which empowers our employees to drive sustainability by identifying and reducing waste across eight key areas.

Through structured training and an efficient review process, we welcome ideas from employees and implement the feasible ideas at the site level. In FY 2024-25, employees submitted 2,370 suggestions, of which 1,659 were feasible, leading to the implementation of 372 ideas. These efforts contributed to significant operational improvements. By recognising and rewarding employees, PARIVARTAN WESAP fosters a culture of continuous improvement, helping us achieve our ambitious waste reduction goals, by making it a collective endeavour of the Company as a whole.

Preserving Biodiversity

Biodiversity is the backbone of a healthy planet, sustaining ecosystems that support life and ensuring long-term environmental resilience. Responsible land use is critical to preserving natural habitats and reducing ecological impact. We take a prudent approach to biodiversity conservation, embedding sustainability into our operations.

21,000 trees

of 104 species planted throughout Galaxy Biodiversity Forest

Biodiversity Management Initiatives

 Thoughtful Land Use: Our facilities are strategically located in industrial zones to avoid ecologically sensitive areas. Every new project undergoes rigorous sustainability assessments to mitigate environmental impact.

- Miyawaki Forests for Rapid Greening: We create lush green spaces that nurture diverse plant and animal life through initiatives like the Galaxy Biodiversity Forest (GBF) at our Jhagadia site. Using this high-density afforestation method, we have transformed two acres of land into a thriving ecosystem. With 21,000 plants from 104 species, including medicinal herbs, fruit-bearing shrubs and native trees, the GBF project fosters rich biodiversity.
- Sustainable Operations:

 Our commitment goes beyond
 a single initiative. To strengthen
 ecological balance, we continue
 expanding tree plantations and
 developing green belts at our sites.

Biodiversity Risk

We assess biodiversity-related risks using the WWF Biodiversity Risk Filter, which evaluates a range of environmental and ecological factors. Key aspects include water scarcity, soil health, forest productivity, landslide resistance, extreme heat, marine fish availability and the presence of vital life forms. The tool also considers ecosystem services such as climate regulation and cultural values—as well as proximity to markets. Pressures on biodiversity, including tree cover loss, pollution and degraded ecosystem conditions, are also analysed. This comprehensive assessment helps us understand and manage the potential impacts on biodiversity across our value chain and make more informed, responsible business decisions.

Goal

Tree Plantation

Cumulative **5 lakh tree plantation** by FY 2029-30

Progress

FY 2023-24 (Cumulative)

1,05,648 trees

FY 2024-25 (Cumulative)

2,08,027 trees